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1. The zeta-function of Riemann is defined in the complex 
s = a + it plane for the half-plane a> 1 by

C«’ = ;i + ;U---+1s+---. (1.1)
12 n

Here is valid also the product-representation of Euler

p

where p runs through the consecutive primes. From this represen­
tation it follows clearly that

£(s)#0 for a > 1. (1.2)

As is well-known, the function £(s) is regular in the whole plane 
except at s = 1, where there is a pole of the first order. It is also 
well-known that the distribution of its roots is of fundamental 
importance in the theory of numbers. We know from the func­
tional equation

s 1—s

(1.3)

that in the half-plane <7 < 0 the only zeros are s = —2, —4, —6, 
. . . and that there are an infinite number of roots g = -f- //„,
the so called “non trivial roots’’, such that

0<<r?<l. (1.4)

The famous hypothesis of Riemann, unproved so far, states that
1* 
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these all lie on the line cr — Using the fact obvious from the 

functional-equation (1.3) that they are symmetrical with respect 

to s = - we can express the content of this hypothesis in the 

form that
C(s)#O for o'>2- (1.5)

No one has yet been able to prove even the existence of a & with

< 1 such that

C(s)#0 for <r>$. (1-6)

2. Next we consider the partial-sums

Un (s) = A + Å H A (2-1 )
12 n

of the series (1.1). They obviously converge to £(s) for cr > 1. 
We ask whether these partial-sums share with £(s) the property 
of being non-vanishing in the half-plane cr > 1. We have found 
the somewhat striking

Theorem I. If there is an n0 such that for n > n0 the partial­
sums Un (s) do not vanish in the half-plane <r > 1, then Rie­
mann’s conjecture (1.5) is true.1)

More generally
Theorem IL If there are positive numbers n0 and K such 

that for n > n0 the partial-sum Un (s) does not vanish in the 
half-plane

(7>1+_L> (2.2)
|/n

then Riemann’s hypothesis (1.5) is true.2)
Still more generally
Theorem III. If there are positive numbers n0, K and i) 

satisfying
1) This elegant form of the theorem is due to Prof. 13. Jessen; my original 

form was more awkward.
2) This theorem is due to my pupil Mr. P. Ungár who observed that the 

method of proof of theorem I furnishes at the same time the proof of theorem II.
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1 < ft < 1
2 =

such that for n > n0 the sum Un(s) does not vanish in the half­
plane

> 1 4—ïizy» (2.4)
n

then £(s)#0 in the half-plane a > ft.
A further not uninteresting generalisation is given by
Theorem IV. If there are positive n0, K, and # satisfying

(2.3) such that for n > n0 the polynomial Un(s) omits in the 
half-plane (2.4) a real value cn with1)

then £ (s) # () for a > ft.
3. All these theorems admit a further generalisation which 

asserts that these theorems remain true even if there is an infinity 
of exceptional n’s provided that there are “not too many”. We 
state explicitly only the analogue of theorem II.

Theorem V. If there is a positive K such that—denoting by 
a(.r) the number of n-values not exceeding x for which Un(s) 

has zeros in the half-plane ff>l+-7=—we have
j/n

I im
X ->oo

(3.1)

then Riemann’s hypothesis (1.5) is true.
Such connection between Riemann’s hypothesis and the roots 

of the partial-sums seems not to have been observed so far. The 
very interesting question whether, supposing Riemann’s hypo­
thesis to be true, we can deduce consequences on the roots of 
the sections, remains open.

On the basis of theorem III we have an interesting situation 
for the roots of the partial-sums Un(s). If Riemann’s hypothesis

1) The stronger statement that the omitted value c must satisfy only 
|cn |< 1 we cannot prove.
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(1.5) is not true, or more exactly sup = 0 > then there is 

an infinity of n’s such that Un (s) vanishes in the half-plane 
a > 1 and even in the half-plane a > 1 4- n®—1—e, where e is 
an arbitrarily small preassigned number. But if Riemann’s hypo­
thesis (1.5) is true, then, curiously, the method fails and nothing 
can be said about the roots of Un (s') this way.

4. What can actually be said about the roots of I7n(s)? Ac­
cording to a theorem of K. Knopp1' every point of the line o = 1 
is a condensation-point for the zeros of Un(s). But in an interesting 
way this condensation happens at least for 111 > r0, where r0 is 
a sufficiently large numerical constant2^ only from the left.

More exactly we can prove
Theorem YI. There exist numerical t0 and K2 such that Un(s) 

does not vanish for

< |i|< ff>1; (4.!)

Further Un (s') does not vanish in the half-plane

a >1+2 log log n
log n n > n0. (4.2)

In the estimation (4.1) of the domain of non-vanishing we 
could replace log n loglog n by logÅn with a suitable k > 1, using 
estimations of VinogradoiT instead of estimations of Weyl.

The first part of theorem VI shows the indicated behaviour 
of the roots of Un(s); but to prove only this for all sufficiently 
large t we could use a more elementary reasoning. We write 
Un (s') in the form

C„(s) = C(s) —<■„(«). (4.3)

In what follows we denote by K3, . . . positive quantities, whose 
dependence upon eventual parameters will be indicated ex­
plicitly; if no such dependence is mentioned they denote numer­
ical constants. If

1) See the paper of R. Jentzscli: Untersuchungen zur Theorie der Folgen 
analytischer Functionen. Acta Math. 41 (1918), p. 219—251, in particular p. 236.

2) This probably also holds with r0 = 0.
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then

1 < tf <2, í ^4, (4.4)

(v + l)1 s — y1 <

and summing over v > n

rn <s)|<

This is true for any s in the domain (4.4) and obviously for 
tf > 1, 111 > 4 ; hence for n > t2

(4.5)

(4.6)

1
Q. e. d.>0.

it follows from this, (4.5) and (4.3), that for 
n>t2

Since for a suitable positive K5 we have1) for

We do not know so far of a single Un(s) vanishing in the 
half-plane tf > 1. Beyond the obvious fact that Un(s) 0 there 
for n < 3, we know only from a remark of Prof. B. Jessen that 
Ui(s) as well as U5(s) does not vanish in the half-plane tf >1. 
For the set of values of Í74(s) coincides “essentially” with that 
of the function

94(^ff) = l+A^ + le<* + p<T
and

(cp, ip, tf) = 1 + — cos ç? + cos +-^cos 2 (p,
2 3 4

so that for fixed a = tf0 > 1
i) T. H. Gronwall: Sur la fonction £(s) de Riemann au voisinage de er = 1. 

Rend. Cire. Mat. di Pal. T. XXXV, 1913, p. 95—102.
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cos œ H-----cos 2 (p
9,?o 4ffo

and for o > 1

4

Similarly we have
11

120"

5. We can prove all the corresponding theorems on replacing 
Í7n (s) with the Cesaro-means1) of the series (1.1)

n — V + 1 
nTl V s. (5.1)

To see what alterations are necessary in the proofs we shall treat 
explicitly only

Theorem VII. If there exist positive K and n0 so that the 
polynomial Cn (s) does not vanish in the hall-plane

a>l+^=,

For the Riesz-means

then Riemann’s hypothesis (1.5) is true.
Though the numerical evidences that the polynomials Cn(.s) 

do not vanish in the half-plane o > 1 are more numerous (e. g. 
the non-vanishing of C6 (s) in this half-plane follows quite tri­
vially), we cannot enlarge the domain of non-vanishing (4.1) of 
theorem VI for the Cesaro-means.

«„(’) = v-s, 
V < n

for which the analogous theorems would have a somewhat 
enhanced interest because of the fact that they converge to £(s) 
in the closed half-plane tr 1, our method fails in principle.

1) Analogous theorems hold for Cesaro-means of higher order.
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ß. Another interesting series for the zeta-function is

(6.1)9

which represents in the half-plane a > 0 the function

(6.2)

1 2 3

This function vanishes in the half-plane o > 0 at the points 
s = Q as well as al

s (6.3)

k - ± 1, ± 2, •••.

Hence from the well-known theorem of Hurwitz it follows 
that the partial-sums

v„W = Z(-Dm+,'»“s
m <n

(6.4)

have roots “near” to ivk if n is sufficiently large, and we prove 
that these occur infinitely often in the half-plane cr> 1. Hence 
the analogue of theorem I is meaningless; but the analogues of 
theorems II, III, IV and V are true. We shall prove only

Theorem VIII. If there exist positive n0 and K such that for 
n > n0 the partial-sums Vn (s) do not vanish in the half-plane 

o’ > 1 4--y=,then Riemann’s conjecture (1.5) is true,
|/n

and
Theorem IX. There is an infinity of values of n for which 

Vn(s) vanishes in the half-plane a> 1.
This will follow from the fact that those roots of V2/i(s) which 

converge for a fixed k to ivk may be expressed asymptotically as

. , 2 k ni
, 1 + log 2

lvk + ------ ö-\ ‘ 11 • •
k 41og2-C(wk)
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7. Returning to the partial-sums Un(s) we have mentioned the 
fact that every point of the line a = 1 is a clustering point of 
the zeros of the polynomials i/n(s). Are these all the clustering 
points? The answer, as we can prove easily, is affirmative. For

(v+1)1 S-- V1 S---(1 —s)v S = V1 S^l+^ -- 1 ---y =

= /_s j¡ (1 — s)(— s) (1 —/jem­

and summing over v

(n+1)1 s — 1— (1— s)i7n(s)|< |s||s— 1 I ff^max(l + y) " 1 < 
1 <.r< n 0<y<

< N i« -11 ¿v1-*.
J' = 1

If a point s* = <r* + i t* in the strip £ S = 1 — £ ^ 0 < e < - 

could be an accumulation-point for the zeros of Un (s) then we have 
for an infinity of values of n that Un(s) vanishes in the domain

t\< (/*+!)• (7.2)

But from (7.1) it follows that in the domain (7.2)

(n + l)‘“s-l-(l-S)l7„(S)|< 4 I s 11 s — 1 I 
e

l-s||Un(S)|>(n + lf-^hlh—h-l >0

if il > n2 = 112 (f*, £), which is a contradiction. For the half-plane 
a < e the proof runs similarly. Analogous statements hold for the 
Cesaro-means Cn(s) and the Riesz-means Rn(s). Similarly we can 
show that the complete set of accumulation points of zeros of 
Vn (s) consists of the points of the line a = 0, the non trivial 
roots Q of the -zeta-function and the points ivk of (6.3).
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8. These results suggest interesting further questions. Let there 
be given the series

a]e~À1S + a2e-À’s+-«.+ane-À'>s+ •••, 0 < < Â2 <------ > oo , (8.1)

which is convergent for or > 0. We denote by H the clustering 
set of the zeros of its partial-sums. Is it always true that H con­
sists of the zeros in a > 0 of the function f (s) defined by the 
series (8.1) and of the points of the line a — 0? We can show 
that the set H can consist of the whole half-plane o"<0; 
by this we give the answer to a question raised by L. Fejer. 
Let ri, 7’2, • • • be the set of all positive rational numbers, arranged 
in such a way that every fixed one occurs infinitely often; we 
consider the product

3(s) = (8.2)
r = 1

Since the product

7T[l+e-S''"]
V = 1

is convergent for o > 0 the product (8.2) can be expressed in 
the form (8.1) convergent for cr > 0. We observe that because of 
the rapid growth of the numbers 2’ every partial-product is at 
the same time a partial-sum; hence all the numbers

. 2 Ini Z = 0, ±1,±2,*”
2 V = 1, 2, • • •

are roots of certain partial-sums. Since every fixed occurs 
infinitely often, every point of the line a = — is a clustering 
point of such roots and so are all points of the half-plane1 ) a < 0.

Somewhat more peculiar is the behaviour of the zeros of the 
sections of the series

—(s + 10) + e— 3 (s + 10) + ---+e— 2ns + e— (2n + l)(s + 10)

as P. Erdös remarked. As is easily shown, the set H consists
1) Putting e~s = z, we obtain a power series, regular for |z| < 1 with the 

property, that the roots of the partial-sums cluster to every point in |z| > 1. 
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in this case of the lines a = 0 and a = —10. Probably one can 
prescribe in the half-plane a < 0 the cluster set H of a Dirichlet- 
series regular in o > 0.

9. The theorems I—V raise the question whether the zeros 
of the partial-sums of a series (8.1) convergent for a > () can 
cluster to the points of the line a = 0 only from the left side. 
That this is, indeed, possible is shown for example by series of 
the type

oc

(9.1) 
r = l

where the ar’s are positive and tend monotonously to 0 in such 
a manner that the line of convergence is the line cr = 0. That 
all the roots of all partial-sums of the series (9.1) lie in the 
half-plane cr < 0, follows from the theorem of Eneström-Kakeya. 
If the coefficients are chosen positive and increasing, then all 
the roots of all partial-sums lie in the half-plane o > 0. For the 
sake of completeness we mention that the function

where the sequence I -> 0 and contains an infinite number of 
both positive and negative terms, has an expansion of the form 
(8.1) (even (9.1)) with the property, that every point of the line 
a = 0 is a condensation-point of zeros from the left half-plane 
and at the same lime a condensation-point of zeros from the 
right half-plane.

10. Of course a direct- approach to the investigation of the 
roots of partial-sums or arithmetical means in the half-plane 
a > 1 seems to be very difficult; the stress of this paper is laid 
upon the connection between these questions and Riemann’s 
hypothesis. In any case the results raise the question how the 
roots of the function given by a Dirichlet-series can influence the 
roots of its partial-sums or suitable means. In this direction no 
results are known so far which hold for the means of finite 
index. If the function is given by a Taylor-serics the situation 
changes. If e. g.

)
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f(s) = ¿ avsr
r = o

The proof is very easy and runs on

is an integral function of order 1, whose roots lie in the half­
plane cr < 0, then all roots of all “Jcnsen-means” of f (s)

lie in the half-plane a < 0. 
known lines.

I wish to thank Mrs. Helen K. Nickerson for linguistic assist­
ance in the preparation of the manuscript.

11. Now we pass on to the proof of theorems I—IV. Obviously 
it is sufficient to prove theorem IV. We base the proof on an 
important theorem of H. Bohr1*, combining it with a classical 
reasoning of Landau2*. First we recall that given a sequence

1) II. Bohr, Zur Theorie der allgemeinen Dirichletschen Reihen. Math. Ann. 
B 79, 1919, p. 136—156. See in particular Satz. 4.

2) E. Landau: Über einen Satz von Tschebischeff. Math. Ann. 61, 1905, 
p. 527—550. The whole method of 14. is due to him. He proved moreover that 
the integral (14.2) converges for o-> y, but we do not use this fact.

n 
S

^1 < ^2 < • • • < ^,1 < • • • ’ (11.0

we call the sequence B of linearly independent numbers

a basis of (11.1), if 
ßl, /?2 > • • • (11-2)

with rational rn ’s. If f(s) is defined in the half-plane a> A by 
the absolutely convergent series

/'(s) = ¿are krs,

r = 1
(11.3)
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Bohr calls every function
oc

g <s) = 2?
i = i

equivalent to f(s), if for suitable (plf tp2, • - ■ and n = 1, 2, • • •

b„ = aiie~‘(V^V,+ (11 4)

Obviously g (s) is also absolutely convergent for a > A. Now the 
above-mentioned theorem of Bohr asserts that the sets of values 
assumed by f(s) and g (s) resp. in the half-plane a > A are 
identical.

We may apply this theorem to f (s) = Un(s) with

B = (log2, log3, • • •, logp, • • •), <py = n (v=l,2,---). (11.5)

If v = p“> p“' • • • p“-, then
r

logV = £a.\ogp.;
i=i

hence

br = exP Í7t £

where, as usual, Å(v) denotes Liouvillc’s number theoretic function.
Hence the set of values assumed by Un (s) in the half-plane

a > 1 + Kn9~1 (11.6)

is identical with that assumed here by the polynomial

= (n-’>
v<n

If Un (s) does not assume the value cn in the half-plane (11.6) 
the same holds for Wn(s). But then the function

Wn(s) — cn, (11.8)

which is real on the real axis and is positive at infinity, if 
n > nlt where 
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A\n'J_1<l, (11.9)

is necessarily positive on the whole positive axis in the half-plane 
(11.6) and in particular non negative for s = 1 + Arz,<>—x. This 
gives that if

n > K7 = max (n0, ni),

(11.10)

12. Using the restrictions on cn, we may write (11.10) for 
n > K7 in the form

2 Â (v) V-1 “Kn<>~1 > — . (12.1)
r < li

Since

log V

the error made in replacing the left hand member of (12.1) by

is in absolute value

Now since for a > 0

V

K2
6 n'

if n > n2 = K8(&). Hence for n > max (A7, A8(#))

V ÀS1Ï1°^V. 1 = C(2s + 2)r(s + l)-2£(s+lRz(2s + 2) 
—' V Vs C (s + 1 )2

(12.2)

r<n

r< n

r = 1 V V
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the usual method of complex integration shows that

v<n

(13.1)

14. Now for o > 0 we have

s

for integral n>K10(&). Now we consider for a continuously 
varying x > Alo (#) the function

and we assert that this is positive for all x > K10(û). We consider 
the x-values belonging to the interval m < x < in + 1, m an 
integer and >Ä1O(0). For x = m our assertion is evident. To 
estimate this function for other x-values we remark that L(x) 
being a step-function is constant for m < æ < in + 1 and hence

L (x) + 2 A\i x& 1,

Â(r)log V
V

= — An7i^_1. (12.3)

is convergent and that its sum is——. Therefore for n > A9 we 

have l°g v > — 2 and for n > max (A7, A8 (7?), A9) = A1()(t7)

L(n)= ^>-^2 + Æ, + y^

r<_n

13. The inequality (12.3) can be written in the form 

s
x

V

oc
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therefore for a > 0

f(2.s + 2)+ 2K1(
sC(s+l) s + 1 — & 

or for a > 1

\ + dx = C(2 4.) + 2^ (u4)
x (s—l)C(s) S — &

From 13. it follows that the numerator of the integrand is positive 
for all sufficiently large re’s; hence we may apply the following 
theorem of Landau0: if a function <p (s') is defined for a > 1 as

/*<»
<p(s) = \ (14.2)

VI

where A (.r) does not change sign for x > x0 and (p (s) is regular 
on the real axis for s > y (< 1), then (p (s') is regular in the entire 
half-plane a > y.

Hence we have only to consider the singularities of the right 

of (14.1) on the real axis. The first term is regular for s > -, the 

second for s>û, hence their sum is regular for s > #. Then 
Landau’s theorem applied to (14.1) shows that the function on 
the right is regular in the half-plane a > But then £(s) cannot 
vanish in this half-plane and theorem IV is proved.

The basis of the proof is the observation that for given arbi­
trarily small positive e and Y] we can find xx = x1(e, t¡) such that 
for a > 1 -f- 7] we have

C(s+ZT1) — -
C(2s)
C(s)

< £.

15. The proof of theorem V runs on the same line but instead 
of Landau’s theorem we use the following theorem of Pólya.J) 
Considering functions of type (14.2) let

1) See above p. 13, note 2.
2) G. Pólya: über das Vorzeichen des Restgliedes im Primzahl-Satz. Gött. 

Nachr. 1930, p. 19—27. A special case of his theorem is given here in a slightly 
altered form.

D. Kgl. Danske Vidensk. Selskab, Mat.-fy s. Medd. XXIV, 17. 2
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1 = x0< Xi< x2< • • • < xn< • • • (15.1)

be a sequence15 which does not cluster to any finite positive value 
and with the property

(—iyâ(æ)>0 for xt,<x <xr+l. (15.2) 

The values x,, are called sign-changing values. If 13 (x) is de- 
by B(<») = El (15.3)

VX r < (0

he assumes that A(.r) 
or more exactly

has “not too many” sign-changing values,

(15.4)

Then Polya’s theorem asserts that il 0 is the exact îegulaiity- 
abscissa of <p(s) and (p(s) is meroinorphic in a half-plane 
a > O  b (ft > 0), then the statement of Landau’s theorem holds 
i. e. the point s = 0 is a singular point of (p (s). Applying this 
theorem to the function on the right in (14.1) we see that the 
condition of meromorphism is fulfilled. If we can deduce from 
(3.1) that the number of the sign-changing places of

2 7<ii.r'>_l satisfies (15.4) the proof of theorem V will be 
completed.

We consider first the integral x-values. If n is a value suffi­

ciently large such that i/n(s) #0 for <r> 1 + or briefly if 

n is a “good” value—the reasoning of IL and 12. gives that 
L(n) + Knn,,>—1 > 0. Then the reasoning of 13. shows that for 
good n’s

L (æ) + 2Knx’</_1 > 0 n<x<n + l. (15.5)

If n is not a good value—or let us rather call it a bad value 
—then L (n) + Knn^~l may be positive; and in this case (15.5) 
is true again. Finally if n is a bad value for which L(n) + An n,z 1 
is < 0, then since both of the functions2*

L(x)KnX'^1, L(.r)-f-2 Anæ'* 1
1) This call consist of a finite number of terms or even of the single term x0.
2) Using the fact that L(x) is constant there, being a step-function. 
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are monotonously decreasing for n < x < n + 1, the second of 
them is either positive throughout n < æ < n + 1 or negative 
throughout or finally positive for x — n and decreasingly negative 
for x -+■ (n + 1) from the left. Hence the number of sign-changes 
< co for L(x) + 2Kua^-1 cannot surpass three times the number 
of bad n’s < co; but then using (3.1) we see that Pólya’s further 
condition (15.4) is fulfilled, indeed.

We can easily show that if Riemann’s hypothesis (1.5) is not 
true, then the partial-sums Un(s) vanish infinitely often in the 
half-plane or > 1 or more generally for every positive e and for 
an infinity of n’s Un(s) vanishes in the half-plane

a > 1

Forwhere sup o() = 0 > | • if we have an ex with 0 — «i > ñ

such that Un (s) 0 in the half-plane 

for all sufficiently large n, then from theorem III we could con­
clude that C(.s) # 0 in the half-plane g > 0— elf a contradiction.

This reasoning fails completely if 0 = -; the identity (14.1) 
valid for a > 1

Ç L (x) + 2 Kn = (2 s —l) C(2s) 1 2 Å'n
1 aX~ 2(» —l)f(«) ' 1 + 1’

• 1 2 $ 2

whose right-side is continuable over the whole plane and behaves 

asymptotically1 ) if s -> - + 0 as

We use the fact—which plays here a decisive role—thati) is negative.

2*
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16. Now we turn to the proof of theorem VI. The second 
part is only mentioned for the sake of completeness; for in the 
half-plane

o>l+210gl0gn
log n

£ (2 <r) _ n1
C(a) a-1

4 (loglog n)2

1
(or—1) log2 n

>

>
•^12

(<r—l)log2n

for n > n0.
For the proof of (4.1) we use an inequality of Weyl0 according 

to which for a > 0, r an integer, t> 3, N < N' <2N we have

For a > 1 we have

(16.1)

To estimate rn(s) for a > 1 and n > t2 we start from

(,+ l)l-s

1) See Landau: Vor], über Zahlenth. II. Theorem 389.
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summing over v

(16.2)

Obviously the same estimation holds for a > 1 as we have seen 
in (4.5).

For |/1 < n < /2 we have

(16.3)

To estimate | Sj we split it into 0 (log t) sums of the form (16.1); 
applying (16.1) to each of them with

r = 2, \rt<N<t\

we obtain that for t > K13 each such sum is in absolute value

< A^l/logi p « + Í

i. e. Si
^16

log2/’ and from (16.3) for t > K13 we have

(16.4)

As appears from (16.2) and (16.4) this estimation is valid for 
all n > j/7.

Now we suppose only
_ i__

log logt 
n > t (16.5)

Then using (16.4) we have

rn («) 1 S F
+ V V

< K” + 
log2/n < v < /1 V>]/1 n < | t (16.6)
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Because of (16.5) we can split S2 into O(log log t) sums of the form

.k 4- 2 .k 4-1/ < v< i
3 < A < 2 log log/. (16.7)

can be split into O(log t)
(16.1) to them with

r = k,

sums of the form (16.1); applying

_L_ 2
/fc + 2 <N< tk+l

we obtain that they are in absolute value

< <Ar19log '

and hence

I *$2 I <
■^19

log2/-

1

Thus for t > K20, n > /log,ogz, <r > 1

lr"(s)l<ïÿï- (16-8)

The inequality n > /loglog/ can obviously be written in the form

I / I < eÄ»*lo8n log log zi

Finally using Gronwall’s inequality (4.6) we obtain for a > 1, 
t A22

17. Next we sketch the proof of theorem VII. A reasoning 
similar to that of 11. shows that from our hypothesis it follows 
that for n > År23
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V = 1

and by an argument similar to that of 12. we obtain for these n’s

Vv<_n
and

(17-1)

then
00

V = 1
00

(17.2)
00

s

— S — 1

Next we have to find the analogue of formula (14.1). Generally 
if for a > 0

V = 1
00

100

S (a?) (.r

for x > K25.

1 dx — s

dr = 7)zl,r < n

L-.

"„ = (m-r+l)d„ = Sm>
n < m V <m

00

A-0 = -J.
r •=!

1/=1
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Hence for a > 0

C(2s+2) (17.3)

Let

th

thenBut

s(s+l)(s + 2)

•oc

and
3

since for o > —- the last expression is in absolute value

+ y) s 2 dyj dx =

\ + S d»),iv-

O»

i X a 2 dx
t/1

r S(s+1)
J ,1

+ 2

poo

S (s + 1) \ x“ S-2
t?l

it represents a function i) (.s') regular and bounded in every half­

plane a > — - + E. Hence for a > 0

s(s+l) + s (s 4-1 ) (,s 4- 2) ■& (s) (17.4)

and from (17.3) and (17.4)
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_£(2.$* + 2) sG’t1)
C(s+1) + 24 ,1

s + 2
2 Æ24 s (s + 1 ) (s + 2) ■& (s),

or for a > 1

\ (æ + y) 1 dy) dx = 
Jo /

= ¡3^tt-- + ^-+2Km(» + 1)#(«-1).
(s—l)C(.s) s 1

s 2

(17.5)

This is the required analogue of (17.1). Now Landau’s theorem 
cannot be applied directly; but we can apply his method. 
Suppose we have proved the following Lemma. If 

is convergent in the half-plane a > 1 with E(x) non negative for 
all sufficiently large x and is regular on the real axis for 
s > y (< 1), then 9>i(s) is also regular in the whole half­
plane a > y.

Then (17.1) and the representation (17.5) give that the require­

ments of the lemma are satisfied with y = hence (s — 1) £(s) # 0 

in the half-plane a > - and theorem VII is proved.

Now we prove the lemma following Landau’s paradigma; we 
prove more, viz. that the representation (17.6) is convergent for 
a > y. Suppose the representation were convergent on the real axis 
only for s > ô where y < ô < 1. Then ç>i(s) is obviously absolutely 
convergent in the half-plane a > ô and regular here. Hence the 
Taylor-expansion around = 2 is convergent at least in the 
circle |s — Sx I <2 — <5; since according to our hypothesis <pi(s) 
is also regular for s = ô the radius of the circle of convergence 
is greater than 2 — <5 and hence there is a <5r< ô such that the 
Taylor-series is convergent at s = <5x. But this Taylor-series is
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since the integrand and all terms are positive we can interchange 
the summation and integration and hence

i. e. the integral is convergent for s = ôr < ô, a contradiction. 
Hence the lemma is proved and the proof of theorem VII is 
completed.

18. Now we sketch the proof of theorem VIII. The arguments 
of 11. and 12. show that for n > K25

and for x > K21

(18.2)
V = 1

For
oo

1 +

s 
V

(18.1)
V + 1 Â (v)

We assert that for a > 1
00

/ x \ / . \v+1 (y) sO)=^>(-D -r

_ 1
(x) + 2 7<2g x 2 > 0.

Next we must find the generating functions of ( 1)

lr+1^>-Æ2,n 1

^7(-l/ + 1Å(y)y~x~gn 2>0;

v<n

for these n’s
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Hence for a > 0

2 \í(2sH-2)
2S+1/ C(s+1)

(,t)+2/vm

Xs + 1
dx = 2 \Ç(2s+2) 2Ktt 

+ 2s+ihc(s+i) s+r

or for o > 1

M+i+2
s X

dx —
CC2.S-)

O-iHO)

Now the remainder of the proof is similar to that of theorem IV.
19. Finally we show that for an infinity of n’s the partial-sums1 )

V <2n
vanish in the half-plane a > 1. For this purpose we consider the 

values V2n(tfÅ.), k fixed and wk = 1

20. First we show that

2 kni 
I<>g2 1 + M

V2n(«;/t) + |(n+1) 1 + lW,C (2 + M)2
2 (20.1)

Starting from the identity

U„(s) = ’72„«-21_S
01+1)’

we obtain, on setting s = wk,

1) The restriction to even indices is only for the sake of convenience.
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Now we have

Putting V = (;i -}- 1), (n + 2), • • • 2n and summing we obtain

(20.3)

The first two bracketed terms can be written in the form

((2 n + l)1"*-(2 n + 20) + ((2 n + 20-(n + 10) =

= -(2 n +1 )^(1 + 2^n)fa‘- 1 ) + ('• + 1 1 ) =

= -(2n + lp-((l+ïnlrip--1j;

hence from (20.2), (20.3) and (20.4)

• (20.4)

2n

<
(20.5)

{,,k

2 t

< Pa-

-(2n + 10
v = n + 1

(2-P|pa. I)“ 1
12 ’n2’

Now
1 

z*2 n +1

(' + 20) + 1 =\ (0i0n +!/)"’'■ (><’*-1).

V0
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_1__ YD*_ ivk
2n + l) 2n + l

iK|(1 + N)
2 (2n + l)2 ’

hence from (20.5)

<

<12

or

< 4

Further

-2+ii>k

<\l,k

ÍVk

2 ,

vk 1
11

2 n

' ' "’/f dy (— 1 + z’pfc) (— 2 4- !Pfc)

2
V =» n +1

I z i —1 + ÍV1, —1 + iv,. , \ —2 + iv,I(v+1) k — v k + (1 — ll)k) V 1

— iuk (2 n 4- 1 ) 1 1 l,’k — ivk v2 n (wk) -

1/(i Iv

\ (7-»)(!+»)'
V()

2n

v= n +1

|(2 + N)8
4

1 + ■»» i

2/1
V2„ (<"*) + (2 n+l)-I + ,"‘-í-^ y y

a summation over v = (n 4~ 1), ' ' 2n gives

(2n4-l) 1 + iv,<
2

v = n + 1

(n+l)_1+i,,/c
2

(2 4-|^|i" 1

Putting this into (20.6) we obtain

V2„ ( «’*) +(2 (2 " + 1 )"1 + ¿ (« + 1 )“1 + '"*)
(20.7)

If we use the transformation (20.4) again the sum of the two 
bracketed terms is
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j ((2 n + l)_l + (2 n + 2)_1 + *’*) +

+ (I• 2"1 + - i) (n + 1 )“1 + = 1 (n + i)"1 + -

.....-)■
(20.8)

Since the second term of the right-hand member of (20.8) is in 
absolute value

3 1
< 2 ‘ 2 n + 1

we obtain from (20.7) and (20.8)

V2n («>*) +j(n + l F 1 + "’‘ (20.9)

i. e. (20.1) is proved.
Now we consider V', (u^). Obviously

The first term is obviously

log 2 •£(«;*). (21.2)

To estimate the second term of (21.1) we observe that

log(2Z+l) log(2Z + 2) 1 Iq 21 + 2
(2/4-1)^ (2Z+2)“’* =2Z+1 °g 11 + 1 '

+ log(2 Z + 2) I (2 I + I)-(2/ + 2) < ■
(2 4^1^1)log(2/J;2)

(2/+ l)2
hence for n > 10 the second term of (21.1) is in absolute value

(2< log (2 r+ 2)
(2v + l)2

<
71
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From this (21.2) and (21.1) we obtain

I V'n(l»k)-log2’C(wfc)|< (2 + W)

Now we consider the expression

F2n 0) = V2n (Wk) + V2n (s~wk^

which is linear and has its zero at

using (20.1) and (21.3) we get

_____1
4 log 2 • C (zz^)

(n + 1 ) 14 ll>l< + 03 K21 (k) (21.5)

Kl<i.

22. We show that for fixed k and n -► oo

1
Tlog 2 • C (u\)

(n + l)_1 + i^

is the asymptotical expression of that root of V2n(s) 
—> ivk if n -> oo. To show this we consider the circle

(21.5) and (22.1) show that w*kn lies in this circle. We

00

V2n 0) = F2n + Å V2n .

f = 2 7 ’

For F., (s) we have identically

(21.3)

(21.4)

(22.1)

which

(22.2)

have

(22.3)

F2n 0) = V2n (Wk> 0 “ lVkn) ’



32 Nr. 17

so that on the whole circumference of the circle (22.2), if n is 
sufficiently large,

I AK27 (À-) log2 n
(22.4)F2n<S)|

V2„0|<Æ2,(i)

independently of n we have from Cauchy’s estimation of coef­
ficients

< *2» (Å) 2(

and on the circle (22.2)

s- I < I s~u/kn I + I iv'kn - wk I < Æ27 (Å-) +

I -^-BO (^') i f lOg n rr Z i\ 1H----- - ----- F Aa, (A) -^2- < A31 (7c) -• ;

hence on the circle (22.2) the second term of (22.3) is in 
absolute value •

°C

<\ ’ K2t (k) < A-82 (*) J2. (22.5)
' J = 2

From (22.4) and (22.3) we obtain for n > 7^33 (7c) on the circum­
ference of (22.2) 

^2n (S) I ^28 (^’)

oo

7 = 2

hence it follows from Rouché’s theorem that the circle (22.2) 
contains as many zeros of V2n(.s) as of F„/((s), i. c. exactly one. 
But this circle is contained in the circle

s (22.6)
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23. To prove finally that for an infinity of zi’s the polynomials 
Vo„(s) vanish in the half-plane a > 1 we have only to observe 
that for fixed k

vk log (n 4- 1) — vk log n -> 0.

Then for an infinity of n’s we have

* 

kn 5 log 2 I £ wk)

hence from (22.6) the real part of the corresponding root of 
^2k(S) is

. < . ______1_________ 1____ 2 Æ27 (Å*) log2 n
+ 5 log 2 IC (wfc) I n + 1 n2

if n is sufficiently large.
We remark finally that for fixed k and n—> °° these roots 

in the half-plane a > 1 lie in half-planes of the form

I I ^33 (^)
n

i. e. their location does not refute the hypothesis of theorem VIII. 
It would be interesting to study these roots if k is not fixed.

It is perhaps of some interest to note that for fixed k the 
behaviour of the corresponding roots of the Riesz-means is dif­
ferent. Denoting by wkn that root of the nth Riesz-mean of the 
series (6.1) which for n -> °° tends to ivk, we have

Hence these roots converge to ivk from the left in a particularly 
simple way. Thus there is some chance that the behaviour of 
the roots of the Riesz-means is more regular.

Added in proof.

24. An easy modification of the proofs gives also a more 
general theorem from which I mention only two special cases.

Theorem X. If for a modulus k there is a character % (ri)
3D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Medd. XXIV. 17.
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such that the partial-sums of the corresponding L-function of 
Dirichlet

(24.1)

do not wanish in the hall-plane a > 1, then Riemann’s hypo­
thesis (1.5) is true.

I cannot prove that this property of the partial-sums of (24.1) 
implies the non-vanishing of L(s,/) itself.

Of course theorem X admits all refinements similarly as 
theorems II-V refine theorem I.

Theorem XI. If for real sequence ßlt ß2, . . . the partial-sums 
of the series 

The interest of theorem X compared to theorem VIII lies 
obviously in the fact that the function L (s, %) has no roots on 
the line <r = 1, in contrast to ^1 —^£(s).

00

(24.2)

do not vanish in the half-plane a > 1, then Riemann’s hypothesis 
(1.5) is true.

Prof. Jessen1’ proved that for “almost all’’ ^-sequences the 

functions f3(s) do not vanish in the half-plane a> - . To obtain 

an explicit /^(s) which has this property, we may choose 
according to a remark of Prof. A. Selberg

where pi = 2, p2 = 3, ... denote the increasingly ordered 
sequence of primes.

Theorem XI admits the same refinements as theorem X.
25. We proved implicitly that if the partial-sums

1) B. Jessen: Some analytical problems relating to probability. Journ. of 
Math, and Physics. Mass. Inst. Techn. vol. XIV (1935), p. 24—27.
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t> <n
are of one sign for all sufficiently large n’s or are for these n’s

> An n'^ » (25.2)

then the hypothesis (1.6) is true. Pólya1) remarked, that if

/.,(«) = (25.3)

is non-positive for all sufficiently large n’s, then Riemann’s 
hypothesis (1.5) is true; with the same reasoning he could prove 
that from the inequality

Li(n) < Ar35 n,z, (25.4)

valid for all sufficiently large n’s, the conjecture (1.6) follows. 
Il seems to me that the condition (25.2) is somewhat less deep 
than (25.4), i. e. one can deduce (25.2) from (25.4). If we re­
place, however, (25.2) and (25.4) by twosided inequalities, the
corres statement follows by partial summation.

Pólya showed by computation the validity of (25.3) for 
2<n< 1500; this has been extended by II. Gupta2) up to 20,000.
'fhe young danish mathematicians Krik Eilertsen, Poul Kristen­
sen, Aage Petersen, Niels Ove Roy Poulsen, and Aage Winther 
calculated the values of L(n) for n< 1000. They found all of 
them to be positive; for A(1000) they found the value

A(1000) = 0,028970560 .

It is remarkable that in this range the minimal value is attained 
at n — 293 and that

A (293) = 0,005102273,

a much smaller value than A (1000).
1) G. Pólya: Verschiedene Bemerkungen zur Zahlentheorie. Jahresb. der

deutsch. Math. Ver. 28(1919), p. 31 10.
2) H. Gupta: On a table of values of Proc. Indian Acad. Sei. Sect.

A. vol. 12(1940), p. 407—409.
3*
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26. I conclude with two remarks. As Paul Erdös remarked, 
he can prove that to any given closed set H in the domain |c|> 1 
which contains the circumference of the unit-circle one can give 
a power-series, convergent in |z| < 1, such that the roots of its 
partial-sums cluster in |z| >1 to the points of H and only to 
those.

As Prof. Sherwood Sherman remarked, my statement on p. 13 
about the Jensen-means is true only if we suppose in addition 
of the roots of the function f(s), that the sum of their reciprocal 
values is convergent.

Indleveret til Selskabet den 31. Oktober 1947.
Færdig fra Trykkeriet den 9. September 1948.


